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Natural resource managers and stakeholders face difficult challenges when managing 
interactions between natural and man-made systems. Even though the collective interests 
and computer skills of the community of managers, scientists, and other stakeholders are 
quite varied, there is an overarching need for equal access by all to the scientific 
knowledge needed to make the best possible decisions. A decision support system (DSS) 
can meet this need. DSSs have been described as, “computer-based systems (for) helping 
decision-makers to solve various semi-structured and unstructured problems involving 
multiple attributes, objectives, and goals… Historically, the majority of DSSs have been 
either computer implementations of mathematical models or extensions of database 
systems and traditional management information systems.” This paper describes DSS 
developed for three hydrologic systems in South Carolina and Georgia, USA. The goals 
of the three DSSs were – the regulatory permitting of wastewater treatment plants on the 
Beaufort River, evaluating the environmental impact of a proposed deepening of 
Savannah Harbor, and evaluating hydroelectric generation on the Pee Dee River to 
protect Myrtle Beach-area freshwater intakes from salinity intrusions. These DSSs 
provide predictive models with real-time databases for simulation, graphical user 
interfaces, and streaming displays of results. Additional features include optimizers, 
integrations with other models and software tools; and color contouring of simulation 
output data. 
 
INTRODUCTION 
 
Natural resource managers and stakeholders face difficult challenges when managing the 
interactions between natural and man-made systems. Complex mathematical 
(mechanistic) models based on first principles physical equations are often developed and 



operated by scientists to evaluate options for using a resource while minimizing damage. 
The interests and computer skills of the actual decision-makers and other stakeholders, 
however, can be quite varied. There is an overarching need for equal access by all to the 
body of scientific knowledge needed to make the best possible decisions. A decision 
support system (DSS) can meet this need. 

Dutta and others [3] describe DSSs as, “computer-based systems (for) helping 
decision-makers to solve various semistructured and unstructured problems involving 
multiple attributes, objectives, and goals… With the help of AI (Artificial Intelligence) 
techniques DSS have incorporated the heuristic models of decision-makers and provided 
increasingly richer support for decision-making.”  

This paper describes DSSs developed to address hydrologic issues in three estuaries 
in South Carolina, USA, and shown in Figure 1. The issues are regulatory permitting of 
three wastewater treatment plants (WWTP) on the Beaufort River, evaluating the 
environmental impact of a proposed deepening of Savannah Harbor, and regulating 
hydroelectric generation on the Pee Dee River to protect coastal freshwater intakes from 
salinity intrusions.  

 
Figure 1.  Beaufort, Savannah, and Myrtle Beach study areas. Markers denote gaging 
sites (triangles or squares) or wastewater treatment plant outfalls (circles). 
 
MODELS 
 
Commonly, a DSS is a software package built around a model, making the model the 
DSS’s most important component because ostensibly, it can correctly predict, “What will 
happen if we do A instead of B?” Models are often developed at considerable expense; 
therefore, the packaging around a DSS is done only to maximize its usefulness to the 
broadest possible community of users. Regardless of the packaging, a model that lacks 
scientific credibility can delay the natural resource management process indefinitely.  

Models used to simulate hydrologic systems are usually either mechanistic or 
empirical models. Calibrating these models is a process of fitting a line or surface 



(function) through data from two or more variables.  Functions predicting system 
response are either prescribed or synthesized. The functions prescribed by mechanistic 
models are physical equations, which incorporate tunable coefficients that are adjusted by 
modelers to match calibration data. Linear regression is the most common empirical 
modeling technique. It prescribes straight lines, planes, or hyper-planes to fit calibration 
data. The insurmountable problem with prescriptive modeling techniques is that if their 
functional form is inherently unable to fit the variable relations that are manifested in the 
data, a representative model is unobtainable. Some mechanistic modeling projects have 
consumed millions of dollars and many years of effort, with some models never accepted 
by the regulatory agencies and stakeholders. 

Artificial neural networks (ANN) are a machine learning technique from AI.  Unlike 
mechanistic and linear models, ANNs synthesize rather than prescribe non-linear 
functions to fit multivariate data. Conrads and Roehl [1] found that ANN models had 
prediction errors that were significantly lower than those of a state-of-the-practice 
mechanistic model when predicting water temperature (WT), specific conductance (SC), 
and dissolved oxygen (DO) on Charleston’s Cooper River estuary. Other benefits of 
ANN models included short development time and fast execution that allows for 
numerical optimization, spreadsheet integration, and integration of ANN models with 
mechanistic models.  

  
DSS FEATURES 
 
All three of the DSSs were developed as Microsoft Excel™/Visual Basic for 
Applications1 (VBA) programs. This allowed the DSS to be prototyped, easily modified, 
and distributed in a familiar form. The DSSs are operated through a graphical user 
interface (GUI).  Other common elements of the DSS are described below. 
 
Data 
Predictive models were developed to represent complex, non-linear, dynamic behaviors 
manifested in years of time series. Spectral filtering was applied to decompose the 
hydrodynamic, water-quality, and meteorological signals into components that 
differentiate periodic and chaotic behaviors. Moving window averages (MWA) of 
varying window sizes are applied to augment these components with calculated variables 
that represent behaviors evolving on different time scales, for example, it takes months of 
data to represent an extended drought condition.  
 
Modeling and Simulation 

                                                            
1 Any use of trade, product, or firm names is for descriptive purposes only and does not 

imply endorsement by the U.S. Government. 
 



ANN sub-models are used to systematically decorrelate input variables and predict 
individual signal components. The sub-models are then assembled into a super-model 
that represents an entire system. This produces predictive models that are customized to 
the unique circumstances and data of a particular system. Each DSS has at least two 
executions of the super-model. One generates predictions using actual historical input 
conditions, which are used to compute prediction errors and graphically depict accuracy. 
The second instantiation generates “What if?” predictions using user-defined controllable 
inputs. Two of the applications provide optimizers that modulate controllable inputs 
during simulations to obtain predictions that match user-defined setpoints.. Each DSS 
incorporates a database of measured, filtered, and calculated time-series variables for 
running long-term simulations. Under user control, a VBA program loops through 
database records, assembles input vectors, executes super-model instantiations, post-
processes and writes model output, and drives graphics.  

 
BEAUFORT RIVER WATER QUALITY 
 
The Beaufort River, South Carolina, is a complex estuarine river system that supports a 
variety of uses including shellfish grounds, fisheries nursery habitats, shipping access to 
Port Royal, receiving waters for wastewater effluent, and an 18-mile reach of the 
Intracoastal Waterway. The river was on the Section 303(d) list of impaired waters of 
South Carolina for low DO concentrations [4]. The Clean Water Act stipulates that a 
Total Maximum Daily Load (TMDL) must be determined for impaired waters. A data-
collection and modeling program was launched in response to the TMDL mandate, and to 
support the permitting of two existing facilities and a new municipal WTTP constructed 
(2006) by Beaufort-Jasper Water and Sewer Authority.  
 
Data 
A network of seven real-time gaging stations was operated by the U.S. Geological Survey 
(USGS) on the Beaufort River and its tributaries. Water level (WL), WT, SC, and DO 
were measured at 15-minute intervals for 34 months.  The DO-difference from saturation 
(DOD) was calculated per USGS guidelines [5] to extract the component of DO 
variability that was unrelated to gas-in-liquid solubility. Three stations were equipped 
with acoustic velocity meters (AVM) that were used to compute tidal streamflow, and 
daily rainfall was measured at two locations. Biochemical oxygen demand (BOD) and 
ammonia (NH3) loads generally were measured only once per week at each WWTP, and 
not concurrently plant-to-plant. The low sample frequency of the BOD and NH3 loads 
dictated a 1-day time step for the model.  
 
Modeling and Simulation 
The Beaufort super-model was composed of 118 separate ANN sub-models. DOD at 
each gaging site was modeled using inputs representing WL, SC, WT, rainfall, BOD and 
NH3. Conrads and others [2] detail how cascaded sub-models were used to decorrelate 



input variables and predict dynamic point and non-point source load responses. A cubic-
spline was used to predict DOD at river locations between the gaging sites.  Bathymetric 
data were used to construct a geometric model having 90- by 90-meter cells. A medial 
axis transform was fitted to a two-dimensional planar view of the waterways to provide 
the lengthwise spatial coordinate.  
 
Special Features 
A constrained optimizer was configured to represent South Carolina State law that 
governed the maximum allowable impact that nutrient loads from the three WWTPs 
could have on riverine DO. Water-resource regulators evaluate receiving waters for 
seasonal impact limits and segment the river for volume-averaging the impacts. Users can 
allocate the TMDL load among the BOD and NH3 discharges from each WWTP. At each 
time step, the optimizer iterates load inputs as the assimilative capacity changes. The GUI 
provides controls for exploring different load and segmentation scenarios. The overall 
TMDL was found to be sensitive to these parameters. The DSS also allows for evaluation 
of rainfall impacts. Rainfall can be adjusted as a percentage of historical conditions.  
 
 
Status 
In terms of acceptance by stakeholders, the Beaufort DSS was particularly successful 
when compared to similar coastal initiatives in South Carolina that used state-of-the-
practice mechanistic models. Permits were issued only 35 months after model 
development began, as compared to 10 or more years for similar mechanistic modeling 
projects in Myrtle Beach and Charleston. The shortened timeframe was due, in part, to 
demonstrably better prediction accuracy, a modeling process that continuously engaged 
stakeholders, and DSS packaging that directly addressed the permitting problem. 

 
SAVANNAH HARBOR DEEPENING 
 
The Savannah Harbor is one of the busiest ports on the East Coast of the USA. The 
harbor is located downstream from the Savannah National Wildlife Refuge (SNWR), an 
important freshwater marsh. Under sponsorship from the U.S. Army Corps of Engineers 
and the Georgia Ports Authority (GPA), the Lower Savannah River estuary has been 
studied for years to evaluate the potential impacts of a proposed harbor deepening.  Many 
databases have been created that describe the natural system’s complexity and behaviors. 
A three-dimensional finite-element hydrodynamic model (3DM) is being developed to 
predict changes in riverine WL and salinity (S) in response to harbor geometry changes. 
A marsh succession model (MSM) also is being developed to predict how plant 
distributions in the marshes would respond to WL and S changes. This created a need for 
a third model, the model to marsh (M2M), which would link river and marsh WL and S 
behaviors. As a result, there was a need for a DSS to integrate all of the models and data 
for stakeholders. 



 
Data 
Figure 1 shows the extensive network of real-time gaging sites operated for the Savannah 
River study. The WL and SC data included: 11½ years from five USGS gaging sites in 
the harbor and river; 6 years from seven USGS marsh sites; 3 months from 14 riverine 
backwater sites operated on behalf of the GPA for 2 different years; and 19 months from 
10 GPA marsh sites; and 11½ years of flow (Q) from an upstream river gaging site (not 
shown in fig. 1). The resulting database was composed of 11½ years of half-hourly data 
(200,000+ time stamps) for 110 measured variables. Further processing extracted chaotic 
signal components and calculated the tidal range and various MWA. 
 
Modeling and Simulation 
The M2M super-model comprises 127 sub-models. Chaotic sub-models predicted chaotic 
WL and SC at four USGS gaging sites in the main channels using inputs for Q and harbor 
WL.  These outputs were input to “high frequency” (HF) sub-models that also used HF 
harbor WL inputs to obtain HF WL and SC predictions at the four gaging sites. The 
chaotic predictions in the main channel were input to sub-models for the remaining 
riverine and marsh sites. This provided one set of ANNs that linked the river’s main 
channel behaviors to tidal forcing and freshwater flows, and a second set that linked main 
channel behaviors to those in backwaters and the marsh.  

The Savannah DSS provides for simulations of up to 11½ years at hourly, or half-
hourly time steps. The variable Q can be set by the user to be a constant or a percentage 
of the historical flow. User-defined hydrographs also can be run.  
 
Special Features 
The 3DM is a complicated program, limiting its accessibility; however, the impacts of 
different harbor change scenarios can be evaluated using a file generated by the 3DM and 
imported into the DSS. The file contains WL and SC biases that are calculated by 
subtracting 3DM predictions (representing proposed channel geometries) from 
predictions generated using historical conditions.  

A custom post-processor imports simulation output and interpolates predictions at 
gaged sites to generate a 2D contour map of S on a grid of the study area. The 
interpolation is performed using expert rules written for each grid cell that accommodate 
the area’s topological features and the different transport mechanisms of channels and 
marshes. The post-processor provides options for time-averaging the predictions, and 
writes interpolated values to an output file that can be imported into the MSM. 
 
Status 
The Savannah DSS was first prototyped in 2002 and a production version was delivered 
in 2004. Delays in the completion of the 3DM and MSM have postponed its widespread 
deployment. Most of the original marsh data was collected during a record-setting 4½-



year drought between 1998 and 2002; therefore, the M2M’s ANN models were recently 
retrained with an additional 2½ years of non-drought data. 

 
PEE DEE RIVER SALINITY INTRUSION  
 
Six reservoirs in North Carolina discharge into the Pee Dee River, which flows 160 miles 
through South Carolina to the coastal communities near Myrtle Beach. During the 
drought between 1998 and 2002, salinity intrusions inundated a coastal municipal 
freshwater intake near Myrtle Beach, South Carolina. The North Carolina reservoirs are 
currently being re-licensed by the Federal Energy Regulatory Commission (FERC) for a 
50-year operating permit. The water has important commercial value for generating 
electric power and for waterfront property development. A coalition composed of Alcoa 
Power, Progress Energy, the Pee Dee River Coalition, and the South Carolina 
Department of Natural Resources sought to model the system’s hydrodynamics and 
determine the minimum flows needed to protect coastal intakes. 
 
Data 
Nine USGS gaging sites provided the WL and SC data used in the study. The data 
spanned 17½ years, but not all of the sites were operated concurrently. The quality of the 
data improved with time. Inflows were obtained from an additional seven USGS gaging 
sites, and rainfall was obtained from six regional meteorological stations. Coastal wind 
speed and direction were obtained from one additional meteorological station.  The 
resulting database comprises 17½ years of hourly data (150,000+ time stamps) for 27 
measured variables. Further processing extracted chaotic signal components and 
calculated the tidal range and various MWA. 
 
Modeling and Simulation 
The Pee Dee super-model is similar to that of the Savannah DSS; however, only SC is 
predicted. The super-model employs 18 sub-models, a chaotic and HF sub-model pair for 
each gaging site.  Tidal forcing was input from the easternmost site along the Atlantic 
Intracoastal Waterway, which was found to be largely unaffected by river flows. The 
controllable input to the model is the flow from the most-downstream dam (Qd) on the 
Pee Dee River, which is summed with the other measured flows with adjustments made 
for transport delays. The Qd generally is much larger than the other combined flows in the 
Pee Dee basin. Rainfall was found to be well accounted for in the inflows, and that wind 
speed and direction are influential at the southernmost gaging sites. 

The Pee Dee DSS provides for simulations corresponding to the most recent and 
higher quality 6½ years of data, at daily or hourly time steps. The Qd can be set by the 
user to be a constant or a percent of the historical measurements. User-defined 
hydrographs also can be run. 
 



Special Features 
The Pee Dee DSS also provides a constrained optimizer that automatically modulates Qd 
to match user-set maximum-SC setpoints. The setpoints can be applied on a daily or 
hourly basis. Higher Qd is required to suppress hourly SC intrusions. The Pee Dee DSS 
also provides built-in documentation that describes the variables and user controls, and 
appears in pop-ups as the mouse is moved in the GUI.  
 
Status 
A number of technical review sessions were held where data and model issues were 
detailed, and successive prototypes were distributed to stakeholders. Feedback from the 
sessions dictated the DSS’s final form, which was completed in 2005.  
 
CONCLUSIONS 
 
A DSS provides a means to effectively transform arcane databases and models into 
information that is equally accessible to all stakeholders for informed decision-making. 
Important features that the DSSs have in common include: 
• Predictive Models - that reliably predict relevant behaviors.  
• Databases – that contain data describing important historical behaviors. 
• Simulation – programmatically time-step models. 
• GUIs – that unite the DSS components with user controls and graphical output. 
Features that are more specialized include: 
• Constrained Optimization – greatly reduces the number of simulations needed.  
• Tool Integration – the Savannah DSS integrates the 3DM and MSM  
• Expert Knowledge – such as water quality standards and expert hydrology rules. 
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